

ENVIRONMENTAL SERVICES, LLC

PHASE II ENVIRONMENTAL SITE ASSESSMENT

FOR

VACANT PARCEL - 10 ACRES 9901 GLADIOLUS DRIVE FORT MYERS, LEE COUNTY, FLORIDA

Prepared For:

Tegal Ventures Limited PO Box 54478, Cy-3724 Limassol, Cyprus

Prepared by:

EE&G Environmental Services, LLC 5751 Miami Lakes Drive Miami Lakes, Florida 33014 (305) 374-8300

October 2011

Project No.: 2011 - 3183

5751 Miami Lakes Drive Miami Lakes, Florida 33014 Tel: (305) 374-8300 Fax: (305) 374-9004

Environmental Certification

EE&G Project No. 2011 - 3183

Report: Phase II Environmental Site Assessment Report, dated October 2011

Site: Vacant Parcel – 10 Acres, 9901 Gladiolus Drive, Fort Myers, Lee County, Florida, Folio Strap Number: 33-45-24-00-00006.0010

Client: Tegal Ventures Limited, PO Box 54478, Cy-3724, Limassol, Cyprus

Environmental Firm: EE&G Environmental Services, LLC (EE&G), 5751 Miami Lakes Drive, Miami Lakes, Florida 33014

Report Prepared By:

am B. Brosens

Adam Brosius Environmental Professional

Report Reviewed By:

Craig C. Clevenger, P.G. Senior Hydrogeologist

Environmental Professional Certification:

I declare that, to the best of my professional knowledge and belief, we meet the definition of *Environmental Professional* as defined in § 312.10 of 40 Code of Federal Regulations (CFR) 312.

The Environmental Professional who directed this project has the specific qualifications based on education, training, and experience to assess a property of the nature, history, and setting of the subject property. We have developed and performed the all appropriate inquiries in conformance with the standards and practices set forth in 40 CFR Part 312.

Craig C. Clevenger, P.G. Senior Hydrogeologist

<u>10/26/2011</u> Date

TABLE OF CONTENTS

Section	Pa	<u>age</u>
1.0 - INTROE	DUCTION	1
1.1 1.2	PURPOSE BACKGROUND INFORMATION	1 1
2.0 – PHASE	II ESA METHODOLOGIES	2
3.0 - PHASE	II ESA FINDINGS	4
3.1 3.2 3.3 3.4 3.5	SOIL LITHOLOGY AND VISUAL CHARACTERISTICS OVA/FID RESULTS SOIL ANALYTICAL RESULTS GROUNDWATER OBSERVATIONS GROUNDWATER ANALYTICAL RESULTS	4 4 5 5
4.0 - CONCL	USIONS AND RECOMMENDATIONS	6

TABLES

Table 1	OVA/FID Results
Table 2	Soil Analytical Results
Table 3	Groundwater Analytical Results

FIGURES

Figure 1 Site Layout and Sample Locations Map

APPENDIX

- Appendix A Analytical Results and Chain-of-Custody Form
- Appendix B Proposed Redevelopment Plan

SECTION 1.0 INTRODUCTION

1.1 PURPOSE

EE&G Environmental Services, LLC (EE&G) was retained by Tegal Ventures Limited, the Client, to perform a Phase II Environmental Site Assessment (ESA) of the Vacant Parcel – 10 Acres property, located at 9901 Gladiolus Drive, Fort Myers, Lee County, Florida (hereafter referred to as the "*Property*"). The *Property* is further described as Folio Strap Number: 33-45-24-00-00006.0010.

In August 2011, EE&G prepared a Phase I ESA for the *Property* to assess for recognized environmental conditions (RECs). EE&G identified the following RECs or site concerns during the performance of the Phase I ESA:

- The historical agricultural usage of the *Property* for approximately 20 years. The potential for agrichemicals to remain in the soil and/or groundwater exists.
- The historical dumping of unknown materials at the western portions of the *Property*.
- The historical dumping of unknown materials across the western adjoining property.

Based on these findings, EE&G recommended that a Phase II ESA be conducted to assess for impacts to the soil and/or groundwater at the *Property*.

SECTION 2.0 PHASE II ESA METHODOLOGIES

To assess the quality of the soil and groundwater at the *Property*, samples were collected utilizing the direct-push technology (DPT) drilling in accordance with the standard practice set forth in ASTM Designation E 1903-97. Access to the southwestern portion of the *Property* was unavailable to the drill rig due to forested areas; therefore, a stainless steel hand-auger was utilized to collect soil samples and for installation of two monitoring wells.

Sampling was conducted in accordance with Florida Department of Environmental Protection's (FDEP's) Standard Operating Procedures (SOPs), as specified in Chapter 62-160, FAC. The samples were collected in laboratory supplied, pre-cleaned sample bottles, placed on ice, and transported to a National Environmental Laboratory Accreditation Conference-certified laboratory for analyses.

The DPT soil sampling technique involved hydraulically driving a sampling core device to the desired depth, collecting the soil sample in acetate liners and extracting the device. On October 5, 2011, EE&G advanced eight soil borings designated SB-1 through SB-8 at the following locations:

- SB-1 thru SB-5: Located across the eastern and central portions of the site, in former agricultural areas.
- SB-6, SB-7 and SB-8: Located at the southwestern portion of the site, in the vicinity of the former dumping of materials.

Refer to **Figure 1** for a map illustrating the soil boring locations.

The soil borings were screened in the field to assess for the presence of organic vapors, and to visually assess the soils for indications of petroleum staining or unnatural discoloration. Soil borings typically extended to 4 feet BLS (with the exception of SB-6, SB-7 and SB-8, which terminated at depths of approximately 1.5 to 3-feet BLS). The depth at which the groundwater interface was encountered was between 0.5 to 1 foot BLS. Samples were retrieved in 4-foot acetate liners in order to isolate and maintain the sample integrity and were then segregated into 2-foot intervals for field analysis. The soil samples were transferred from the acetate liners into pre-cleaned 8-ounce soil jars until half-full, covered with aluminum foil, and allowed to equilibrate to obtain representative readings. The soil samples were screened utilizing a Heath Tech Detecto-Pak III Organic Vapor Analyzer (OVA), equipped with a Flame Ionization Detector (FID). The OVA/FID was utilized with, and without a charcoal filter to assess for the presence of naturally occurring methane. The net OVA/FID readings were interpreted to assess for the presence of volatile organic compounds, indicative of a petroleum hydrocarbon or chlorinated solvent source. OVA/FID results generated from field-testing of soils were compared with the action level established in the Florida Department of Environmental Protection (FDEP) "Guidelines for Assessment and Source Removal of Petroleum Contaminated Soils" dated May 1998. The action level defined by these guidelines is 10 parts per million (ppm) of organic vapors.

Five soil samples were collected from the approximately 0 to 1 feet BLS interval from soil borings SB-1 and SB-5. These five surficial soil samples were analyzed for the following parameter:

• Total Arsenic by EPA Method 6010B

Three soil samples also were collected from soil borings SB-6, SB-7 and SB-8 from the approximately 0 to 1 feet BLS interval and analyzed for the following parameters:

- Total Arsenic, Barium, Cadmium and Lead by EPA Method 6010B
- Polynuclear Aromatic Hydrocarbons (PAHs) by EPA Method 8270D
- Total Petroleum Hydrocarbons (TPH) by Method FL-PRO

EE&G collected shallow interval groundwater samples from five DPT sample points designated GP-1 and GP-5 (which corresponded to the soil sample locations SB-1 thru SB-5). The DPT groundwater sampling technique utilized a Screen Point 15 (SP15) sampler, in which a decontaminated unit was threaded onto the leading end of a probe rod and driven to the desired sampling interval. While the sampler was driven to a depth, O-ring seals at the drive head and expendable drive point provided a watertight system. Once at the desired sampling interval, the drive rod was retracted to expose the 4-foot long screened interval and allow access for groundwater sampling. The depth to groundwater was encountered was between 0.5 to 1 foot BLS; therefore, the DPT sampling points were screened from surface grade to a depth of 4-feet BLS. EE&G also installed two 1-inch diameter temporary monitoring wells (TMW-1 and TMW-2) at the southwestern boundary of the *Property*, which consisted of a PVC screened interval from surface grade to a depth of approximately 2 to 4 feet BLS. Prior to sampling, the DPT and TMW sampling points were purged using a peristaltic pump until field parameters (pH, turbidity, dissolved oxygen, temperature and conductivity) stabilized to ensure a representative sample of the groundwater was collected.

Shallow interval groundwater samples were collected from GP-1 thru GP-5 and analyzed for the following parameter:

• Total Arsenic by EPA Method 200.7

Shallow interval groundwater samples were collected from TMW-1 and TMW-2 and analyzed for the following parameters:

- Volatile Organic Compounds (VOCs) by EPA Method 8260B
- PAHs by EPA Method 8270D
- TPH by Method FL-PRO

Refer to **Figure 1** for a map illustrating the groundwater sampling locations.

SECTION 3.0 PHASE II ESA FINDINGS

Groundwater analytical results were compared with the FDEP's *Contaminant Cleanup Target Levels*, per Chapter 62-777, FAC, which regulates the Groundwater Cleanup Target Levels (GCTLs; a.k.a., No Further Action criteria) and Natural Attenuation Default Source Concentrations (NADSCs; a.k.a., Monitoring Only criteria). Soil analytical results were compared with the FDEP *Contaminant Cleanup Target Levels*, per Chapters 62-777, FAC, which regulate Soil Cleanup Target Levels (SCTLs) for *residential-use direct exposure*, *commercial-use direct exposure* and *leachability* concerns.

3.1 SOIL LITHOLOGY AND VISUAL CHARACTERISTICS

Soil samples collected from the site via direct-push were examined for lithologic characteristics, and the lithologic column generally consisted of the following:

- 0 to 1 feet BLS Brown Fine Sand
- 1 to 2 feet BLS Brown and Tan Fine Sand
- 2 to 4 feet BLS Dark Brown Fine Sand

EE&G did not observe the presence of buried debris within the soil borings. No unusual odors, staining or discolorations were noted within the soil samples.

3.2 OVA RESULTS

OVA results generated from field-testing of soils were compared with the action level established in the FDEP's "*Guidelines for Assessment and Source Removal of Petroleum Contaminated Soils*", dated May 1998. The action level defined by these guidelines was 10 parts per million (ppm) of organic vapors, which applies to soils collected above the water table.

Net OVA samples from the soil borings did not reveal readings above 10 ppm. Detectable concentrations of methane were observed within the soil samples, ranging from 180 ppm to 480 ppm. The OVA results are summarized in **Table 1**.

3.3 SOIL ANALYTICAL RESULTS

Based on comparison to the SCTLs, EE&G noted the following with regard to the soil analytical results:

- Total arsenic was detected in the soil samples collected from SB-1 thru SB-5 at concentrations ranging from 0.141 milligrams per kilogram (mg/Kg) to 0.741 mg/Kg. None of these samples exceeded the 2.1 *residential-use direct exposure* mg/Kg SCTL or 12 mg/Kg *commercial-use direct exposure* SCTL.
- Low concentrations of barium, chromium and lead were detected in soil samples SB-6, SB-7 and SB-8; however, these concentrations did not exceed their applicable SCTLs.
- Soil samples SB-6, SB-7 and SB-8 did not exhibit detectable concentrations of PAHs or TPH above the laboratory method detection limits.

Copies of the soil analytical results and chain-of-custody (COC) form are provided in **Appendix A**. The soil analytical results are summarized in **Table 2**.

3.4 GROUNDWATER OBSERVATIONS

During the sampling effort, neither free-floating product (FFP), petroleum sheen, nor a hydrocarbon odor were observed on the groundwater from the direct-push sampling points or temporary monitoring wells.

3.5 GROUNDWATER ANALYTICAL RESULTS

Based on comparison to the GCTLs, EE&G noted the following with regard to the groundwater analytical results:

• Groundwater samples collected from GP-1 thru GP-5 exhibited detectable concentrations of total arsenic ranging from 0.006 milligrams per liter (mg/L) to 0.024 mg/L. The concentrations detected in GP-2 (0.019 mg/L), GP-3 (0.011 mg/L) and GP-5 (0.024 mg/L) exceeded the 0.010 mg/L GCTL, but were below the 0.10 mg/L NADSC.

Based on these detections, which were slightly above the GCTL, EE&G requested that the field-filtered samples for GP-2, GP-3 and GP-5 be analyzed for dissolved arsenic. The groundwater samples exhibited dissolved arsenic concentrations as follows, which also exceeded the GCTL: GP-2 at 0.018 mg/L, GP-3 at 0.011 mg/L and GP-5 at 0.023 mg/L.

• Neither VOCs, PAHs nor TPH were above the laboratory's method detection limit in groundwater samples analyzed from TMW-1 and TMW-2.

A copy of the groundwater analytical results and COC forms are provided in **Appendix A**. The groundwater analytical results are summarized in **Table 3**.

SECTION 4.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the field observations & soil and groundwater analytical findings, EE&G has concluded the following:

- Surficial soils samples analyzed for the presence of total arsenic in the eastern and central portions of the *Property* (in the former agricultural areas), did not exhibit concentrations above the FDEP residential-use direct exposure SCTLs.
- Three surficial soil samples and two groundwater samples collected from the southwestern portion of the *Property* (in the area of apparent former dumping of unknown materials), did not exhibited elevated concentrations of the analyzed parameters.
- Three of the five direct-push groundwater samples collected from the former agriculture area at the eastern and central portions of the *Property* exhibited low concentrations of total and dissolved (field-filtered) arsenic, ranging from 0.011 mg/L to 0.024 mg/L, which slightly exceeded the 0.010 mg/L GCTL.

Based on the Phase II ESA findings, EE&G does not see any obstacle to the proposed commercial redevelopment plan (see **Appendix B**). It is not uncommon to find arsenic impacts as a result of historic agricultural usage, and there are numerous examples across the State of Florida of both residential and commercial redevelopment on sites impacted with remnants of agrichemical application.

Considering that none of the soil samples tested contained total arsenic above the SCTL, EE&G recommends that two permanent monitoring wells be installed in the immediate vicinity of GP-2 and GP-5 to re-assess for the presence of arsenic-affected groundwater. The use of permanent wells can often reduce the amount of turbidity and are more representative of actual groundwater quality.

If the re-sampling event confirms the presence of arsenic above the GCTL, then it is possible that additional assessment may be warranted to delineate the extent of affected groundwater. However, based on Phase II ESA sampling data, these low arsenic levels could be managed using Natural Attenuation Monitoring, and would not require active remediation. Please note that if the presence of arsenic is confirmed, restrictions on the future use of the groundwater may be warranted, including a prohibition on use for potable or irrigation purposes. Furthermore, if dewatering is required for construction, then effluent may need to be monitored to determine if any treatment is warranted prior to disposal.

Please note that the southwestern portion of the site could not be readily accessed for the performance of test pits to ascertain if any buried debris was located due to apparent historical dumping. EE&G did not observe surface debris in this area of the site, nor in the soil borings from this area. However, EE&G cautions that conditions may be different in other areas. Therefore, EE&G recommends that any potential debris be managed and disposed of properly if encountered during redevelopment of this area.

TABLES

TABLE 1 SOIL OVA RESULTS VACANT PARCEL - 10 ACRE 9901 GLADIOLUS DRIVE FT. MYERS, FL

SOIL BORING DESIGNATION	DEPTH IN FEET	PARTS PER MILLION (TOTAL)	PARTS PER MILLION (WITH CARBON FILTER)	PARTS PER MILLION (NET)
SB-1	0 – 2	250	250	<1
0D-1	2 – 4	220	220	<1
SB-2	0 – 2	350	350	<1
00 2	2 – 4	240	240	<1
SB-3	0-2	480	480	<1
00.0	2-4	220	220	<1
SB-4	0-2	270	270	<1
0D-4	2-4	240	240	<1
SB-5	0-2	180	180	<1
0D-0	2 – 4	200	200	<1
SB-6	0-2	420	420	<1
SB-7	0 – 2	310	310	<1
1-00	2 – 3	350	350	<1
SB-8	0 – 1.5	460	460	<1

Note:

NF = Not charcoal filtered

TABLE 2 SOIL ANALYTICAL RESULTS VACANT PARCEL - 10 ACRES 9901 GLADIOLUS DRIVE FORT MYERS, FL

	Sa	mple Designat	ion	SB-1	SB-2	SB-3	SB-4	SB-5	SB-6	SB-7	SB-8
		Date Collecter		10/5/11	10/5/11	10/5/11	10/5/11	10/5/11	10/5/11	10/5/11	10/5/11
	Depth (feet - BLS)		0 - 1	0 - 1	0 - 1	0 - 1	0 - 1	0 - 0.5	0 - 1	0 - 1	
Parameter	Soil Cleanup Target Levels										
Farameter	Residential	Commercial	Leachability								
Metals											
Arsenic	2.1	12	***	0.142 (I)	0.212 (I)	0.141 (I)	0.170 (l)	U	0.627	0.741	0.292
Barium	120	130,000	1,600	NT	NT	NT	NT	NT	2.123	1.410	2.357
Cadmium	82.0	1,700	7.5	NT	NT	NT	NT	NT	U	U	U
Chromium	210	470	38	NT	NT	NT	NT	NT	4.629	3.262	4.897
Lead	400	1,400	***	NT	NT	NT	NT	NT	1.010	1.123	0.936
VOCs	*	*	*	NT	NT	NT	NT	NT	U	U	U
PAHs	*	*	*	NT	NT	NT	NT	NT	U	U	U
TPH by FL-PRO	460	2,700	340	NT	NT	NT	NT	NT	U	U	U

Notes:

Bold = Detected value in excess of cleaunp criteria

All values given in milligrams per kilogram (mg/Kg) * = No group standard. *** = Assessd via SPLP or TCLP

NT = Not Tested for this parameter

I = Laboratory value between method detection and method reporting limits

U = Analyzed but not detected

TABLE 3 GROUNDWATER ANALYTICAL RESULTS VACANT PARCEL - 10 ACRES 9901 GLADIOLUS DRIVE FT. MYERS, FL

Parameter	00TI *			Sample Designation								
Falameter	GUIL	NADSC	GP-1	GP-2	GP-3	GP-4	GP-5	TMW-1	TMW-2			
Date Sampled			10/5/11	10/5/11	10/5/11	10/5/11	10/5/11	10/5/11	10/5/11			
Metals (mg/L)												
Total Arsenic	0.010	0.100	0.007	0.019	0.011	0.006	0.024	NT	NT			
Dissolved Arsenic	0.010	0.100	NT	0.018	0.011	NT	0.023	NT	NT			
VOC (ug/L)	***	***	NT	NT	NT	NT	NT	U	U			
PAH (ug/L)	***	***	NT	NT	NT	NT	NT	U	U			
TPH by FL-PRO (mg/L)	5.0	50	NT	NT	NT	NT	NT	U	U			

Notes:

Bold = Indicates value in excess of cleanup criteria

ug/L = micrograms per liter mg/L = milligrams per liter

U - Analytical result below the laboratory method reporting limit.

NT = Not Tested for this parameter.

Groundwater Cleanup Target Level (GCTL)

Natural Attenuation Default Source Concentration (NADSC) VOC = Volatile Organic Compounds

PAHs = Polynuclear Aromatic Hydrocarbons

TPH = Total Petroleum Hydrocarbons

FIGURES

APPENDIX A

ANALYTICAL RESULTS AND CHAIN OF CUSTODY FORM

Vacant Property (2011-3183) **Project:** Site Location: 9901 Gladiolus Dr., Fort Myers, FL Matrix: Solids

Page 1 of 11 Report Printed: 10/13/11 Submission # 1110000178 **Order** # 84258

Sample I.D.: SB-1-1' Collected: 10/05/11 10:10 10/06/11 Received: 13:55 Collected by: Jake Lathrop

LABORATORY ANALYSIS REPORT All results reported as dry weight where appropriate.

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Percent Solids	84.7		%	0.1	0.3	SM2540G	10/11 09:47	10/12 11:47	LYR
Arsenic	0.142 «	I	mg/Kg	0.0649	0.1947	3050/6010B	10/06	10/06 18:43	IMN

« Results reported as Dry Weight ((Wet Weight / % Solids) x 100) QC=Qualifier Codes as defined by DEP 62-160 Analytes not currently NELAC certified denoted by ~. Work performed by outside (subcontract) labs denoted by Cert.ID in Analyst Field. Persults relate only to the comple Results relate only to the sample.

Oualifiers:

U = Analyzed for but not detected.

Q=Sample held beyond accepted holding time. I=Value is between MDL and PQL.

Authonized CSM Signature Florida Environmental; Certification # E86006

Florida-Spectrum Environmental Services, Inc. 1460 W. McNab Road, Fort Lauderdale, FL 33309

Pembroke Laboratory 528 Gooch Rd. Fort Meade, FL 33841

Big Lake Laboratory 610 North Parrot Ave. Okeechobee, FL 34972 www.flenviro.com Spectrum Laboratories 630 Indian St. Savannah, GA 31401

All NELAP certified analyses are performed in accordance with Chapter 64E-1 Florida Administrative Code, which has been determined to be equivalent to NELAC standards. Analyses certified by programs other than NELAP are designated with a "~".

Page 2 of 11 Report Printed: 10/13/11 Submission # 1110000178 Order # 84259

Vacant Property (2011-3183) 9901 Gladiolus Dr., Fort Myers, FL **Project:** Site Location: Matrix: Solids

Sample I.D.: SB-2-1' Collected: 10/05/11 10:30 Received: 10/06/11 13:55 Collected by: Jake Lathrop

LABORATORY ANALYSIS REPORT All results reported as dry weight where appropriate.

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Percent Solids	84.8		%	0.1	0.3	SM2540G	10/11 09:47	10/12 11:47	LYR
Arsenic	0.212 «	1	mg/Kg	0.0649	0.1947	3050/6010B	10/06	10/06 19:15	IMN

« Results reported as Dry Weight ((Wet Weight / % Solids) x 100)
 QC=Qualifier Codes as defined by DEP 62-160
 Analytes not currently NELAC certified denoted by ~.
 Work performed by outside (subcontract) labs denoted by Cert.ID in Analyst Field.
 Results relate only to the sample.

Oualifiers:

U=Analyzed for but not detected.

Q=Sample held beyond accepted holding time. I=Value is between MDL and PQL.

0)

Authorized CSM Signature Florida Environmental; Certification # E86006

Project: Vacant Property (2011-3183) Site Location: 9901 Gladiolus Dr., Fort Myers, FL Matrix: Solids

Page 3 of 11 Report Printed: 10/13/11 Submission # 1110000178 **Order** # 84260

Sample I.D.: SB-3-1' Collected: 10/05/11 10:55 Received: 10/06/11 13:55 Collected by: Jake Lathrop

LABORATORY ANALYSIS REPORT All results reported as dry weight where appropriate.

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Percent Solids	85.0		%	0.1	0.3	SM2540G	10/11 09:47	10/12 11:47	LYR
Arsenic	0.141 «	I	mg/Kg	0.0649	0.1947	3050/6010B	10/06	10/06 19:20	IMN
				· · · · · · · · · · · · · · · · · · ·					

« Results reported as Dry Weight ((Wet Weight / % Solids) x 100) QC = Qualifier Codes as defined by DEP 62-160 Analytes not currently NELAC certified denoted by ~. Work performed by outside (subcontract) labs denoted by Cert.ID in Analyst Field. Results relate only to the sample. Qualifiers:

U=Analyzed for but not detected.

Q=Sample held beyond accepted holding time. I=Value is between MDL and PQL.

Autholized CSM Signature Florida Environmental;Certification # E86006

Page 4 of 11 Report Printed: 10/13/11 Submission # 1110000178 Order # 84261

Project: Site Location:	Vacant Property (2011-3183) 9901 Gladiolus Dr., Fort Myers,	FL
Matrix:	Solids	

Sample I.D.:	SB-4-1'	
Collected:	10/05/11	11:15
Received:	10/06/11	13:55
Collected by:	Jake Lathrop	

LABORATORY ANALYSIS REPORT All results reported as dry weight where appropriate.

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Percent Solids	58.9		%	0.1	0.3	SM2540G	10/11 09:47	10/12 11:47	LYR
Arsenic	0.170 «	I	mg/Kg	0.0649	0.1947	3050/6010B	10/06	10/06 19:24	IMN

« Results reported as Dry Weight ((Wet Weight / % Solids) x 100) QC = Qualifier Codes as defined by DEP 62-160 Analytes not currently NELAC certified denoted by ~. Work performed by outside (subcontract) labs denoted by Cert.ID in Analyst Field. Results relate only to the sample. Qualifiers:

U=Analyzed for but not detected.

Q=Sample held beyond accepted holding time. I=Value is between MDL and PQL.

Authorized CSM Signature Florida Environmental;Certification # E86006

Page 5 of 11 Report Printed: 10/13/11 Submission # 1110000178 **Order** # 84262

Vacant Property (2011-3183) 9901 Gladiolus Dr., Fort Myers, FL **Project:** Site Location: Matrix: Solids

Sample I.D.: SB-5-2' Collected: 10/05/11 11:40 10/06/11 **Received:** 13:55 Collected by: Jake Lathrop

LABORATORY ANALYSIS REPORT All results reported as dry weight where appropriate.

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Percent Solids	86.2		%	0.1	0.3	SM2540G	10/11 11:02	10/12 11:52	LYR
Arsenic	U «	U	mg/Kg	0.0649	0.1947	3050/6010B	10/06	10/06 19:29	IMN

« Results reported as Dry Weight ((Wet Weight / % Solids) x 100) QC=Qualifier Codes as defined by DEP 62-160 Analytes not currently NELAC certified denoted by ~. Work performed by outside (subcontract) labs denoted by Cert.ID in Analyst Field. Results relate only to the sample.

Qualifiers:

U = Analyzed for but not detected.

Q = Sample held beyond accepted holding time. I = Value is between MDL and PQL.

Authonized CSM Signature Florida Environmental;Certification # E86006

Project:Vacant Property (2011-3183)Site Location:9901 Gladiolus Dr., Fort Myers, FLMatrix:Solids

Page 6 of 11 Report Printed: 10/13/11 Submission # 1110000178 Order # 84263

Sample I.D.:	SB-6-0.5'	
Collected:	10/05/11	12:30
Received:	10/06/11	13:55
Collected by:	Jake Lathrop	р

LABORATORY ANALYSIS REPORT All results reported as dry weight where appropriate.

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Percent Solids	78.2		%	0.1	0.3	SM2540G	10/11 09:48	10/12 11:48	LYR
Arsenic	0.627 «		mg/Kg	0.0649	0.1947	3050/6010B	10/06	10/06 19:34	IMN
Barium	2.123 «		mg/Kg	0.0017	0.0051	3050/6010B	10/06	10/06 19:34	IMN
Cadmium	U «	บ	mg/Kg	0.0038	0.0114	3050/6010B	10/06	10/06 19:34	IMN
Chromium	4.629 «		mg/Kg	0.038	0.114	3050/6010B	10/06	10/06 19:34	IMN
Lead	1.010 «		mg/Kg	0.0528	0.1584	3050/6010B	10/06	10/06 19:34	IMN
8270D PAHs in Soils and Wastes by GC	Z/MS	1	1	Dilution	Factor =	1			<u>.</u>
Naphthalene	U «	U	ug/Kg	1.37	4.11	3550/8270D	10/11 17:28	10/12 17:28	AC
2-Methylnaphthalene	U «	U	ug/Kg	0.66	1.98	3550/8270D	10/11 17:28	10/12 17:28	AC
1-Methylnaphthalene	U «	U	ug/Kg	0.45	1.35	3550/8270D	10/11 17:28	10/12 17:28	AC
Acenaphthene	U «	U	ug/Kg	0.55	1.65	3550/8270D	10/11 17:28	10/12 17:28	AC
Phenanthrene	U «	U	ug/Kg	0.52	1.56	3550/8270D	10/11 17:28	10/12 17:28	AC
Fluoranthene	Ü «	U	ug/Kg	0.51	1.53	3550/8270D	10/11 17:28	10/12 17:28	AC
Benzo(a)anthracene	U «	U	ug/Kg	0.46	1.38	3550/8270D	10/11 17:28	10/12 17:28	AC
Benzo(b)fluoranthene	บ «	U	ug/Kg	0.53	1.59	3550/8270D	10/11 17:28	10/12 17:28	AC
Benzo(a)pyrene	U «	U	ug/Kg	0.48	1.44	3550/8270D	10/11 17:28	10/12 17:28	AC
Benzo(ghi)perylene	U «	U	ug/Kg	0.66	1.98	3550/8270D	10/11 17:28	10/12 17:28	AC
Acenaphthylene	U «	U	ug/Kg	0,45	1.35	3550/8270D	10/11 17:28	10/12 17:28	AC
		1		1					

Page 7 of 11 Report Printed: 10/13/11 Submission # 1110000178 Order # 84263

Project:	Vacant Property (2011-3183)
Site Location:	9901 Gladiolus Dr., Fort Myers, FL
Matrix:	Solids

Sample I.D.:	SB-6-0.5'	
Collected:	10/05/11	12:30
Received:	10/06/11	13:55
Collected by:	Jake Lathrop	

LABORATORY ANALYSIS REPORT All results reported as dry weight where appropriate.

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Fluorene	U «	υ	ug/Kg	0.43	1.29	3550/8270D	10/11 17:28	10/12 17:28	AC
Anthracene	U«	υ	ug/Kg	0.36	1.08	3550/8270D	10/11 17:28	10/12 17:28	AC
Pyrene	U«	U	ug/Kg	0.43	1.29	3550/8270D	10/11 17:28	10/12 17:28	AC
Chrysene	U «	U	ug/Kg	0.54	1.62	3550/8270D	10/11 17:28	10/12 17:28	AC
Benzo(k)fluoranthene	U «	U	ug/Kg	0.56	1.68	3550/8270D	10/11 17:28	10/12 17:28	AC
Indeno(1,2,3-cd)pyrene	U «	U	ug/Kg	0.47	1.41	3550/8270D	10/11 17:28	10/12 17:28	AC
Dibenzo(a,h)anthracene	U «	U	ug/Kg	0.66	1.98	3550/8270D	10/11 17:28	10/12 17:28	AC
FL-PRO (Petroleum Residual Organic I	Totals)-SOIL	1	1	Dilution	n Factor =	1 1			
TOTAL PRO (C8-C40)	U «	U	mg/Kg	0.01	0.03	FL-PRO	10/07 08:37	10/07 18:02	AC

« Results reported as Dry Weight ((Wet Weight / % Solids) x 100) QC = Qualifier Codes as defined by DEP 62-160 Analytes not currently NELAC certified denoted by ~. Work performed by outside (subcontract) labs denoted by Cert.ID in Analyst Field. Results relate only to the sample. Oualifiers:

Qualifiers:

U = Analyzed for but not detected.

Q=Sample held beyond accepted holding time. I=Value is between MDL and PQL.

anos

Authonized CSM Signature Florida Environmental; Certification # E86006

Page 8 of 11 Report Printed: 10/13/11 Submission # 1110000178 Order # 84264

Project: Site Location: Matrix:	Vacant Property (2011-3183) 9901 Gladiolus Dr., Fort Myers, FL Solids	Sample I.D.: Collected: Received: Collected by:	SB-7-1' 10/05/11 10/06/11 Jake Lathrop	13:10 13:55
	I A DODATORY A MAI VSIC DED	പതന	-	

LABORATORY ANALYSIS REPORT All results reported as dry weight where appropriate.

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Percent Solids	83.7		%	0.1	0.3	SM2540G	10/11 11:02	10/12 11:52	LYR
Arsenic	0.741 «		mg/Kg	0.0649	0.1947	3050/6010B	10/06	10/06 19:38	IMN
Barium	1.410 «		mg/Kg	0.0017	0.0051	3050/6010B	10/06	10/06 19:38	IMN
Cadmium	U «	U	mg/Kg	0.0038	0.0114	3050/6010B	10/06	10/06 19:38	IMN
Chromium	3.262 «		mg/Kg	0.038	0.114	3050/6010B	10/06	10/06 19:38	IMN
Lead	1.123 «		mg/Kg	0.0528	0.1584	3050/6010B	10/06	10/06 19:38	IMN
8270D PAHs in Soils and Wastes by GC	/MS	1	1	Dilution	i Factor =	1			
Naphthalene	U «	U	ug/Kg	1.37	4.11	3550/8270D	10/11 17:29	10/12 17:29	AC
2-Methylnaphthalene	U «	U	ug/Kg	0.66	1.98	3550/8270D	10/11 17:29	10/12 17:29	AC
1-Methylnaphthalene	U «	U	ug/Kg	0.45	1.35	3550/8270D	10/11 17:29	10/12 17:29	AC
Acenaphthene	U «	U	ug/Kg	0.55	1.65	3550/8270D	10/11 17:29	10/12 17:29	AC
Phenanthrene	U «	υ	ug/Kg	0.52	1.56	3550/8270D	10/11 17:29	10/12 17:29	AC
Fluoranthene	U «	บ	ug/Kg	0.51	1.53	3550/8270D	10/11 17:29	10/12 17:29	AC
Benzo(a)anthracene	U «	U	ug/Kg	0.46	1.38	3550/8270D	10/11 17:29	10/12 17:29	AC
Benzo(b)fluoranthene	U «	U	ug/Kg	0.53	1.59	3550/8270D	10/11 17:29	10/12 17:29	AC
Benzo(a)pyrene	U «	U	ug/Kg	0.48	1.44	3550/8270D	10/11 17:29	10/12 17:29	AC
Benzo(ghi)perylene	U «	U	ug/Kg	0.66	1.98	3550/8270D	10/11 17:29	10/12 17:29	AC
Acenaphthylene	Ų «	υ	ug/Kg	0.45	1.35	3550/8270D	10/11 17:29	10/12 17:29	AC
		1	1	1			1	1	

Page 9 of 11 Report Printed: 10/13/11 Submission # 1110000178 Order # 84264

Project:	Vacant Property (2011-3183)
Site Location:	9901 Gladiolus Dr., Fort Myers, FL
Matrix:	Solids

Sample I.D.:	SB-7-1'	
Collected:	10/05/11	13:10
Received:	10/06/11	13:55
Collected by:	Jake Lathrop	

LABORATORY ANALYSIS REPORT All results reported as dry weight where appropriate.

PARAMETER	RESULT	QC	UNITS	MDL	PQL	метной	DATE EXT.	DATE ANALY.	ANALYST
Fluorene	U «	υ	ug/Kg	0.43	1.29	3550/8270D	10/11 17:29	10/12 17:29	AC
Anthracene	U «	U	ug/Kg	0.36	1.08	3550/8270D	10/11 17:29	10/12 17:29	AC
Pyrene	U «	ย	ug/Kg	0.43	1.29	3550/8270D	10/11 17:29	10/12 17:29	AC
Chrysene	U «	U	ug/Kg	0.54	1.62	3550/8270D	10/11 17:29	10/12 17:29	AC
Benzo(k)fluoranthene	U «	U	ug/Kg	0.56	1.68	3550/8270D	10/11 17:29	10/12 17:29	AC
Indeno(1,2,3-cd)pyrene	U «	U	ug/Kg	0.47	1.41	3550/8270D	10/11 17:29	10/12 17:29	AC
Dibenzo(a,h)anthracene	U «	U	ug/Kg	0.66	1.98	3550/8270D	10/11 17:29	10/12 17:29	AC
FL-PRO (Petroleum Residual Organic T	otals)-SOIL	l	I	l Dilution	n Factor =	1			
TOTAL PRO (C8-C40)	U «	U	mg/Kg	0.01	0.03	FL-PRO	10/07 08:37	10/07 18:35	AC

« Results reported as Dry Weight ((Wet Weight / % Solids) x 100) QC=Qualifier Codes as defined by DEP 62-160 Analytes not currently NELAC certified denoted by ~. Work performed by outside (subcontract) labs denoted by Cert.ID in Analyst Field. Results relate only to the sample. Qualifiers:

U=Analyzed for but not detected.

Q=Sample held beyond accepted holding time. I=Value is between MDL and PQL.

۵

Authorized CSM Signature Florida Environmental;Certification # E86006

Project:Vacant Property (2011-3183)Site Location:9901 Gladiolus Dr., Fort Myers, FLMatrix:Solids

Page 10 of 11 Report Printed: 10/13/11 Submission # 1110000178 Order # 84265

SB-8-0.5'	
10/05/11	13:00
10/06/11	13:55
Jake Lathrop)
	SB-8-0.5' 10/05/11 10/06/11 Jake Lathrop

LABORATORY ANALYSIS REPORT All results reported as dry weight where appropriate.

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Percent Solids	82.3		%	0.1	0.3	SM2540G	10/11 11:02	10/12 11:52	LYR
Arsenic	0.292 «		mg/Kg	0.0649	0.1947	3050/6010B	10/06	10/06 19:43	IMN
Barium	2.357 «		mg/Kg	0.0017	0.0051	3050/6010B	10/06	10/06 19:43	IMN
Cadmium	U «	U	mg/Kg	0.0038	0.0114	3050/6010B	10/06	10/06 19:43	IMN
Chromium	4.897 «		mg/Kg	0,038	0.114	3050/6010B	10/06	10/06 19:43	IMN
Lead	0.936 «		mg/Kg	0.0528	0.1584	3050/6010B	10/06	10/06 19:43	IMN
8270D PAHs in Soils and Wastes by GC	 /MS	1 · · ·	1	Dilution	Factor =	1			
Naphthalene	U «	U	ug/Kg	1.37	4.11	3550/8270D	10/11 17:29	10/12 17:29	AC
2-Methylnaphthalene	U «	U	ug/Kg	0.66	1.98	3550/8270D	10/11 17:29	10/12 17:29	AC
1-Methylnaphthalene	U «	U	ug/Kg	0.45	1.35	3550/8270D	10/11 17:29	10/12 17:29	AC
Acenaphthene	U «	U	ug/Kg	0.55	1.65	3550/8270D	10/11 17:29	10/12 17:29	AC
Phenanthrene	υ«	U	ug/Kg	0.52	1.56	3550/8270D	10/11 17:29	10/12 17:29	AC
Fluoranthene	U «	U	ug/Kg	0.51	1.53	3550/8270D	10/11 17:29	10/12 17:29	AC
Benzo(a)anthracene	U«	U	ug/Kg	0.46	1.38	3550/8270D	10/11 17:29	10/12 17:29	AC
Benzo(b)fluoranthene	U«	U	ug/Kg	0.53	1.59	3550/8270D	10/11 17:29	10/12 17:29	AC
Benzo(a)pyrene	U«	U	ug/Kg	0.48	1.44	3550/8270D	10/11 17:29	10/12 17:29	AC
Benzo(ghi)perylene	U «	U	ug/Kg	0.66	1.98	3550/8270D	10/11 17:29	10/12 17:29	AC
Acenaphthylene	U«	U	ug/Kg	0.45	1.35	3550/8270D	10/11 17:29	10/12 17:29	AC

Page 11 of 11 Report Printed: 10/13/11 Submission # 1110000178 Order # 84265

Project:	Vacant Property (2011-3183)
Site Location:	9901 Gladiolus Dr., Fort Myers, FL
Matrix:	Solids

Sample I.D.:	SB-8-0.5'	
Collected:	10/05/11	13:00
Received:	10/06/11	13:55
Collected by:	Jake Lathrop	

LABORATORY ANALYSIS REPORT All results reported as dry weight where appropriate.

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Fluorene	U«	U	ug/Kg	0.43	1.29	3550/8270D	10/11 17:29	10/12 17:29	AC
Anthracene	U «	U	ug/Kg	0.36	1.08	3550/8270D	10/11 17:29	10/12 17:29	AC
Pyrene	U «	ບ	ug/Kg	0.43	1.29	3550/8270D	10/11 17:29	10/12 17:29	AC
Chrysene	ป «	U	ug/Kg	0.54	1.62	3550/8270D	10/11 17:29	10/12 17:29	AC
Benzo(k)fluoranthene	U «	U	ug/Kg	0.56	1.68	3550/8270D	10/11 17:29	10/12 17:29	AC
Indeno(1,2,3-cd)pyrene	U «	U	ug/Kg	0.47	1.41	3550/8270D	10/11 17:29	10/12 17:29	AC
Dibenzo(a,h)anthracene	U «	U	ug/Kg	0,66	1.98	3550/8270D	10/11 17:29	10/12 17:29	AC
FL-PRO (Petroleum Residual Organic T	otals)-SOIL	1	1	I Dilution	Factor =	1			
TOTAL PRO (C8-C40)	U «	U	mg/Kg	0.01	0.03	FL-PRO	10/07 08:38	10/07 19:08	AC

« Results reported as Dry Weight ((Wet Weight / % Solids) x 100) QC = Qualifier Codes as defined by DEP 62-160 Analytes not currently NELAC certified denoted by ⁻. Work performed by outside (subcontract) labs denoted by Cert.ID in Analyst Field. Results relate only to the sample. Qualifiers:

U=Analyzed for but not detected.

.

Q = Sample held beyond accepted holding time. I = Value is between MDL and PQL.

Authonized CSM Signature Florida Environmental;Certification # E86006

Pick-Uphrs W-wide mouth W-wide mouth X-other Misc. Charges B-brown liter	Sample Custody & Field Comments A-liter amber B-Bacteria bag Temp as received C Custody seals? Y FIELD TIME: Sampling hrs V.40 or soil jar	Deliverables:	"I waive NELAC protocol" (sign here) >	Special Comments:	0	0	· 04 205 88-8-0.5' 1	1-2-25 JOG 78 .	. 50-9-25 202 Hd.	· 64,262 88-5-2.	· 842101 518-4-1.	· 842100 88-3-1.	2 84254 SB-2-1'	184258 58-1-1' 1	Shaded Areas For Laboratory Use Only	Lab Control Number	ORDER # Sample	Sampler Name: Joke Lathrya	Project Adam Brosius	Project Name and/or Number Vacan to Projector ((company name)	Report to: (company name) LEETA	CSM assigned	Logged in LIMS by ND	IIID-ITA Spectrum	SUBMISSION #
ı TED-Tedlar Air Bag <u>ional Bottle Types</u> plastic	<u>Bottle Type</u> 9/bottle 0-125 ml r / S8-8 oz soil jar	QA/QC Report Needed?		- 400			0021	0121	1230	/ 1140	1115	1055	01010	0-05 1010	2011	Sampreu	Date Time	Affiliation:	Phone: 505-372	2011-31835	Purchase Order #		Original-J	610 Parrot Ave	□ 1460 W. McNi □ 630 Indian Stra □ 528 Gooch Ro	
Additional Pres Hex-Hex Cr Buffer EDA-Ethylene Diamine	A-ascorbic acid Preservat A-ascorbic acid S- C-HCL S- Cu-CuSO4 T- H-HNO3 U- M-MCAB V- Z-zinc acetate NI	Yes No (ad												2	S SED HW BIO SEA OIL X AIR Codes	DW SW GW WW Pres.	Matrix Bottle	05-322-2002	- 9300				Return w/report	e. N, Okeechobee, FL 3	ab Road Ft Laud. FL 33 eet Savannah, GA 3140 ad Fort Meade, FL 338	CHAIN O
ervatives	ives H3PO4 H2SO4 Unpreserved NaOH H4-NH4CL	ditional charge)		Total											Letter Suffixes # A-? F	Received & NELAC	Number of Containers	Sampler Signature	Pax: ZOS.	Location: 99	Address:	Address:	Yellow-Lab Fi	4972 Tel: (8	(309 Tel: (9 1 Tel: (9 41 Tel: (8	F CUSTO
3 Received by: www.flenviro.co	2 Relindrisher by 2 Received by 3 Relinquisher by	1 Received by	1 Relinquished by:	Signature			9	5	۲ ۲	7	5				AS PAM 627 FL- FL- FL-	t. 20 - 1	Analys	T. Lov bra	274-9004	of alzoliolus	Miami Lab	5751 Mismi	ile Copy Pink -	63) 763-3336	54) 978-6400 112) 238-5050 63) 285-8145	DY RECORD
m	Martin Pri	4	2 hours and	Affi			٩	2	7						T-A, Bz, Cr,	5, ; d, pb	is Required		Ellan,	Dr. Ft. Mys.	15 Fe 33014	· Lokes Dr.	Sampler Copy	Fax: (863) 763-1544	Fax: (954) 978-2233 Fax: (912) 234-4815 Fax: (863) 285-7030	
COC Page	11/0/101 11 11/0/101 10	/. /.	EtG 10-01 .	liation											ر م م	× ت ت ت				ray the				- Rush Surcharges	$\frac{10 - 10 - 1}{\text{RUSH RESERVA}}$	DUE DATE Req
of (13:55 521	12/22	n/ Jaro	Date/Time											D R R		LIGSIN						- 11-	apply	TION #	uested

Vacant Property (2011-3183) **Project:** Site Location: 9901 Gladiolus Dr., Fort Myers, FL Matrix: Water

Page 1 of 17 Report Printed: 10/12/11 Submission # 1110000180 Order # 84269

Sample I.D.:	GP-1	
Collected:	10/05/11	10:20
Received:	10/06/11	13:55
Collected by:	Jake Lathrop	

LABORATORY ANALYSIS REPORT

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Arsenic	0.007		mg/L	0.0012	0.0036	200.7	10/06	10/06 17:53	IMN

Unless indicated, soil results are reported based on actual (wet) weight basis.

Analytes not currently NELAC certified denoted by $\tilde{}$. Work performed by outside (subcontract) labs denoted by Cert.ID in Analyst Field. Results relate only to this sample. QC = Qualifier Codes as defined by DEP 62-160

U=Analyzed for but not detected.

Q=Sample held beyond accepted holding time. I=Value is between MDL and PQL.

J=Estimated value.

Authonized CSM Signature (954) 978-6400 Florida-Spectrum Environmental Services, Inc. Certification # E86006

Florida-Spectrum Environmental Services, Inc. 1460 W. McNab Road, Fort Lauderdale, FL 33309

Pembroke Laboratory 528 Gooch Rd. Fort Meade, FL 33841

Big Lake Laboratory 610 North Parrot Ave. Okeechobee, FL 34972 www.flenviro.com Spectrum Laboratories 630 Indian St. Savannah, GA 31401

All NELAP certified analyses are performed in accordance with Chapter 64E-1 Florida Administrative Code, which has been determined to be equivalent to NELAC standards. Analyses certified by programs other than NELAP are designated with a *~*.

Project:Vacant Property (2011-3183)Site Location:9901 Gladiolus Dr., Fort Myers, FLMatrix:Water

Page 2 of 17 Report Printed: 10/12/11 Submission # 1110000180 Order # 84270

Sample I.D.:	GP-2	
Collected:	10/05/11	10:40
Received:	10/06/11	13:55
Collected by:	Jake Lathrop	

LABORATORY ANALYSIS REPORT

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Arsenic	0.019		mg/L	0.0012	0.0036	200.7	10/06	10/06 17:57	IMN
			I						

Unless indicated, soil results are reported based on actual (wet) weight basis.

Analytes not currently NELAC certified denoted by $\tilde{}$. Work performed by outside (subcontract) labs denoted by Cert.ID in Analyst Field. Results relate only to this sample. QC=Qualifier Codes as defined by DEP 62-160 U=Analyzed for but not detected. Q=Sample held beyond accepted holding time. I=Value is between MDL and PQL. J=Estimated value.

Authonized CSM Signature (954) 978-64(

Authonized CSM Signature (954) 978-6400 Florida-Spectrum Environmental Services, Inc. Certification # E86006

Project:Vacant Property (2011-3183)Site Location:9901 Gladiolus Dr., Fort Myers, FLMatrix:Water

Page 3 of 17 Report Printed: 10/12/11 Submission # 1110000180 Order # 84271

 Sample I.D.:
 GP-3

 Collected:
 10/05/11
 11:05

 Received:
 10/06/11
 13:55

 Collected by:
 Jake Lathrop

LABORATORY ANALYSIS REPORT

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Arsenic	0.011		mg/L	0.0012	0.0036	200.7	10/06	10/06 18:02	IMN

Unless indicated, soil results are reported based on actual (wet) weight basis.

Analytes not currently NELAC certified denoted by $\tilde{}$. Work performed by outside (subcontract) labs denoted by Cert.ID in Analyst Field. Results relate only to this sample. QC=Qualifier Codes as defined by DEP 62-160 U=Analyzed for but not detected. Q=Sample held beyond accepted holding time. I=Value is between MDL and PQL. J=Estimated value.

ð

Authonized CSM Signature (954) 978-6400 Florida-Spectrum Environmental Services, Inc. Certification # E86006

Project:Vacant Property (2011-3183)Site Location:9901 Gladiolus Dr., Fort Myers, FLMatrix:Water

Page 4 of 17 Report Printed: 10/12/11 Submission # 1110000180 Order # 84272

Sample I.D.:	GP-4	
Collected:	10/05/11	11:25
Received:	10/06/11	13:55
Collected by:	Jake Lathrop	

LABORATORY ANALYSIS REPORT

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Arsenic	0.006		mg/L	0.0012	0.0036	200.7	10/06	10/06 18:06	IMN

Unless indicated, soil results are reported based on actual (wet) weight basis.

Analytes not currently NELAC certified denoted by ~. Work performed by outside (subcontract) labs denoted by Cert.ID in Analyst Field. Results relate only to this sample. QC=Qualifier Codes as defined by DEP 62-160 U=Analyzed for but not detected. Q=Sample held beyond accepted holding time. I=Value is between MDL and PQL. J=Estimated value.

00

Authorized CSM Signature (954) 978-6400 Florida-Spectrum Environmental Services, Inc. Certification # E86006

Project: Vacant Property (2011-3183) Site Location: 9901 Gladiolus Dr., Fort Myers, FL Water Matrix:

Page 5 of 17 Report Printed: 10/12/11 Submission # 1110000180 Order # 84273

Sample I.D.:	GP-5	
Collected:	10/05/11	11:50
Received:	10/06/11	13:55
Collected by:	Jake Lathrop	

LABORATORY ANALYSIS REPORT

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Arsenic	0.024		mg/L	0.0012	0.0036	200.7	10/06	10/06 18:11	IMN

Unless indicated, soil results are reported based on actual (wet) weight basis.

Analytes not currently NELAC certified denoted by ~. Work performed by outside (subcontract) labs denoted by Cert.ID in Analyst Field.

Results relate only to this sample. QC=Qualifier Codes as defined by DEP 62-160

U=Analyzed for but not detected.

Q=Sample held beyond accepted holding time. I=Value is between MDL and PQL.

J=Estimated value.

Ò

CSM Signature (954) 978-6400 Authorized Florida-Spectrum Environmental Services, Inc. Certification # E86006

Project:Vacant Property (2011-3183)Site Location:9901 Gladiolus Dr., Fort Myers, FLMatrix:Water

╉

t

Page 6 of 17 Report Printed: 10/12/11 Submission # 1110000180 Order # 84274

Sample I.D.:	TMW-1	
Collected:	10/05/11	12:45
Received:	10/06/11	13:55
Collected by:	Jake Lathrop	

1

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
8260B Volatile Organics in Water by	GC/MS	 	1	Diluti	on Factor =	1			
Acetone	υ	υ	ug/L	1.42	4.26	5030/8260B	10/11 17:59	10/11 17:59	MAZ
Acrolein	υ	υ	ug/L	6.99	20.97	5030/8260B	10/11 17:59	10/11 17:59	MAZ
Acrylonitrile	U	U	ug/L	0.52	1.56	5030/8260B	10/11 17:59	10/11 17:59	MAZ
Methyl Ethyl Ketone	U	U	ug/L	0.56	1.68	5030/8260B	10/11 17:59	10/11 17:59	MAZ
Dichlorodifluoromethane	U	υ	ug/L	1.06	3.18	5030/8260B	10/11 17:59	10/11 17:59	MAZ
Chloromethane	U	U	ug/L	0.88	2.64	5030/8260B	10/11 17:59	10/11 17:59	MAZ
Vinyl Chloride	U	U	ug/L	0.79	2.37	5030/8260B	10/11 17:59	10/11 17:59	MAZ
Bromomethane	U	υ	ug/L	0.60	1.80	5030/8260B	10/11 17:59	10/11 17:59	MAZ
Chloroethane	υ	υ	ug/L	0.47	1.41	5030/8260B	10/11 17:59	10/11 17:59	MAZ
Trichlorofluoromethane	υ	υ	ug/L	0.48	1.44	5030/8260B	10/11 17:59	10/11 17:59	MAZ
1,1-Dichloroethene	υ	υ	ug/L	0.42	1.26	5030/8260B	10/11 17:59	10/11 17:59	MAZ
Methylene Chloride	U .	υ	ug/L	0.99	2.97	5030/8260B	10/11 17:59	10/11 17:59	MAZ
Trans-1,2-Dichloroethene	υ	U	ug/L	0.21	0.63	5030/8260B	10/11 17:59	10/11 17:59	MAZ
Methyl-Tert-Butyl Ether	υ	U	ug/L	0.55	1.65	5030/8260B	10/11 17:59	10/11 17:59	MAZ
1,1-Dichloroethane	υ	U	ug/L	0.19	0.57	5030/8260B	10/11 17:59	10/11 17:59	MAZ
2,2-Dichloropropane	υ	U	ug/L	0.76	2.28	5030/8260B	10/11 17:59	10/11 17:59	MAZ
Cis-1,2-Dichloroethene	υ	U	ug/L	0.17	0.51	5030/8260B	10/11 17:59	10/11 17:59	MAZ
		1		1			1	1	

Project:Vacant Property (2011-3183)Site Location:9901 Gladiolus Dr., Fort Myers, FLMatrix:Water

Page 7 of 17 Report Printed: 10/12/11 Submission # 1110000180 Order # 84274

Sample I.D.:	TMW-1	
Collected:	10/05/11	12:45
Received:	10/06/11	13:55
Collected by:	Jake Lathrop	

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Chloroform	υ	υ	ug/L	0.27	0.81	5030/8260B	10/11 17:59	10/11 17:59	MAZ
Bromochloromethane	υ	υ	ug/L	0.21	0.63	5030/8260B	10/11 17:59	10/11 17:59	MAZ
1,1,1-Trichloroethane	υ	υ	ug/L	0.67	2.01	5030/8260B	10/11 17:59	10/11 17:59	MAZ
1,1-Dichloropropene	υ	υ	ug/L	0.65	1.95	5030/8260B	10/11 17:59	10/11 17:59	MAZ
Carbon Tetrachloride	υ	υ	ug/L	0.81	2.43	5030/8260B	10/11 17:59	10/11 17:59	MAZ
Benzene	U	υ	ug/L	0.14	0.42	5030/8260B	10/11 17:59	10/11 17:59	MAZ
1,2-Dichloroethane	U	U	ug/L	0.31	0.93	5030/8260B	10/11 17:59	10/11 17:59	MAZ
Trichloroethene	υ	U	ug/L	0.34	1.02	5030/8260B	10/11 17:59	10/11 17:59	MAZ
1,2-Dichloropropane	U	U	ug/L	0.46	1.38	5030/8260B	10/11 17:59	10/11 17:59	MAZ
Bromodichloromethane	U	U	ug/L	0.52	1.56	5030/8260B	10/11 17:59	10/11 17:59	MAZ
2-Chloroethylvinyl Ether	υ	U	ug/L	0.76	2.28	5030/8260B	10/11 17:59	10/11 17:59	MAZ
Dibromomethane	υ	υ	ug/L	0.37	1.11	5030/8260B	10/11 17:59	10/11 17:59	MAZ
Cis-1,3-Dichloropropene	υ	U	ug/L	0.41	1.23	5030/8260B	10/11 17:59	10/11 17:59	MAZ
Toluene	U	U	ug/L	0.31	0.93	5030/8260B	10/11 17:59	10/11 17:59	MAZ
Trans-1,3-Dichloropropene	U	U	ug/L	0.28	0.84	5030/8260B	10/11 17:59	10/11 17:59	MAZ
1,1,2-Trichloroethane	U	U	ug/L	0.46	1.38	5030/8260B	10/11 17:59	10/11 17:59	MAZ
1,3-Dichloropropane	U	υ	ug/L	0.46	1.38	5030/8260B	10/11 17:59	10/11 17:59	MAZ
Tetrachloroethene	U	υ	ug/L	0.42	1.26	5030/8260B	10/11 17:59	10/11 17:59	MAZ
	1	1	1	1	1	1	1	1	1

Project:Vacant Property (2011-3183)Site Location:9901 Gladiolus Dr., Fort Myers, FLMatrix:Water

Page 8 of 17 Report Printed: 10/12/11 Submission # 1110000180 Order # 84274

Sample I.D.:	TMW-1	
Collected:	10/05/11	12:45
Received:	10/06/11	13:55
Collected by:	Jake Lathrop	

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Dibromochloromethane	υ	υ	ug/L	0.30	0.90	5030/8260B	10/11 17:59	10/11 17:59	MAZ
1,2-Dibromoethane (EDB)	υ	U	ug/L	0.25	0.75	5030/8260B	10/11 17:59	10/11 17:59	MAZ
Bromobenzene	U	υ	ug/L	0.40	1.20	5030/8260B	10/11 17:59	10/11 17:59	MAZ
Chlorobenzene	υ	υ	ug/L	0.34	1.02	5030/8260B	10/11 17:59	10/11 17:59	MAZ
Ethylbenzene	U	υ	ug/L	0.42	1.26	5030/8260B	10/11 17:59	10/11 17:59	MAZ
1,1,1,2-Tetrachloroethane	U	υ	ug/L	0.15	0.45	5030/8260B	10/11 17:59	10/11 17:59	MAZ
m & p-Xylene	U	U	ug/L	0.80	2.40	5030/8260B	10/11 17:59	10/11 17:59	MAZ
o-Xylene	U	U	ug/L	0.32	0.96	5030/8260B	10/11 17:59	10/11 17:59	MAZ
Styrene	U	U	ug/L	0.31	0.93	5030/8260B	10/11 17:59	10/11 17:59	MAZ
Isopropylbenzene	U	U	ug/L	0.38	1.14	5030/8260B	10/11 17:59	10/11 17:59	MAZ
Bromoform	υ	U	ug/L	0.16	0.48	5030/8260B	10/11 17:59	10/11 17:59	MAZ
1,1,2,2-Tetrachloroethane	υ	U	ug/L	0.14	0.42	5030/8260B	10/11 17:59	10/11 17:59	MAZ
1,2,3-Trichloropropane	υ	υ	ug/L	0.22	0.66	5030/8260B	10/11 17:59	10/11 17:59	MAZ
1,3,5-Trimethylbenzene	υ	υ	ug/L	0.38	1.14	5030/8260B	10/11 17:59	10/11 17:59	MAZ
2-Chlorotoluene	ບ	U	ug/L	0.38	1.14	5030/8260B	10/11 17:59	10/11 17:59	MAZ
4-Chlorotoluene	υ	υ	ug/L	0.33	0.99	5030/8260B	10/11 17:59	10/11 17:59	MAZ
Tert-Butylbenzene	υ	U	ug/L	0.40	1.20	5030/8260B	10/11 17:59	10/11 17:59	MAZ
1,2,4-Trimethylbenzene	U	U	ug/L	0.38	1.14	5030/8260B	10/11 17:59	10/11 17:59	MAZ
		<u> </u>	1	1	1	1	1	1	1

Project:Vacant Property (2011-3183)Site Location:9901 Gladiolus Dr., Fort Myers, FLMatrix:Water

Page 9 of 17 Report Printed: 10/12/11 Submission # 1110000180 Order # 84274

Sample I.D.:	TMW-1	
Collected:	10/05/11	12:45
Received:	10/06/11	13:55
Collected by:	Jake Lathrop	

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Sec-Butylbenzene	U	U	ug/L	0.45	1.35	5030/8260B	10/11 17:59	10/11 17:59	MAZ
P-Isopropyltoluene	U	U	ug/L	0.41	1.23	5030/8260B	10/11 17:59	10/11 17:59	MAZ
1,3-Dichlorobenzene	U	υ	ug/L	0.40	1.20	5030/8260B	10/11 17:59	10/11 17:59	MAZ
1,4-Dichlorobenzene	U	υ	ug/L	0.39	1.17	5030/8260B	10/11 17:59	10/11 17:59	MAZ
n-Butylbenzene	U	υ	ug/L	0.34	1.02	5030/8260B	10/11 17:59	10/11 17:59	MAZ
n-PropylBenzene	U	υ	ug/L	0.39	1.17	5030/8260B	10/11 17:59	10/11 17:59	MAZ
1,2-Dichlorobenzene	U	υ	ug/L	0.30	0.90	5030/8260B	10/11 17:59	10/11 17:59	MAZ
1,2-Dibromo-3-Chloropropane (DBCP)) U	υ	ug/L	0.17	0.51	5030/8260B	10/11 17:59	10/11 17:59	MAZ
1,2,4-Trichlorobenzene	υ	U	ug/L	0.23	0.69	5030/8260B	10/11 17:59	10/11 17:59	MAZ
Hexachlorobutadiene	U	U	ug/L	0.47	1.41	5030/8260B	10/11 17:59	10/11 17:59	MAZ
Naphthalene	υ	U	ug/L	0.24	0.72	5030/8260B	10/11 17:59	10/11 17:59	MAZ
1,2,3-Trichlorobenzene	υ	υ	ug/L	0.28	0.84	5030/8260B	10/11 17:59	10/11 17:59	MAZ
8270D PAHs in WATER by GC/MS	F	l	···	Diluti	on Factor =	1			
Naphthalene	υ	υ	ug/L	0.027	0.081	8270D	10/07 08:35	10/07 16:35	AC
2-Methylnaphthalene	U	U	ug/L	0.036	0.108	8270D	10/07 08:35	10/07 16:35	AC
1-Methylnaphthalene	U	U	ug/L	0.020	0.060	8270D	10/07 08:35	10/07 16:35	AC
Acenaphthene	U	U	ug/L	0.008	0.024	8270D	10/07 08:35	10/07 16:35	AC
Phenanthrene	υ	U	ug/L	0.013	0.039	8270D	10/07 08:35	10/07 16:35	AC
		1			1	1	1		

Project:Vacant Property (2011-3183)Site Location:9901 Gladiolus Dr., Fort Myers, FLMatrix:Water

Page 10 of 17 Report Printed: 10/12/11 Submission # 1110000180 Order # 84274

Sample I.D.:	TMW-1	
Collected:	10/05/11	12:45
Received:	10/06/11	13:55
Collected by:	Jake Lathrop	

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Fluoranthene	U	U	ug/L	0.004	0.012	8270D	10/07 08:35	10/07 16:35	AC
Benzo(a)anthracene	U	U	ug/L	0.004	0.012	8270D	10/07 08:35	10/07 16:35	AC
Benzo(b)fluoranthene	υ	υ	ug/L	0.008	0.024	8270D	10/07 08:35	10/07 16:35	AC
Benzo(a)pyrene	υ	υ	ug/L	0.006	0.018	8270D	10/07 08:35	10/07 16:35	AC
Benzo(ghi)perylene	υ	υ	ug/L	0.007	0.021	8270D	10/07 08:35	10/07 16:35	AC
Acenaphthylene	U	υ	ug/L	0.006	0.018	8270D	10/07 08:35	10/07 16:35	AC
Fluorene	U	υ	ug/L	0.008	0.024	8270D	10/07 08:35	10/07 16:35	AC
Anthracene	U	U	ug/L	0.006	0.018	8270D	10/07 08:35	10/07 16:35	AC
Pyrene	υ	υ	ug/L	0.011	0.033	8270D	10/07 08:35	10/07 16:35	AC
Chrysene	υ	υ	ug/L	0.004	0.012	8270D	10/07 08:35	10/07 16:35	AC
Benzo(k)fluoranthene	υ	υ	ug/L	0.003	0.009	8270D	10/07 08:35	10/07 16:35	AC
Indeno(1,2,3-cd)pyrene	υ	υ	ug/L	0.011	0.033	8270D	10/07 08:35	10/07 16:35	AC
Dibenzo(a,h)anthracene	υ	U	ug/L	0.004	0.012	8270D	10/07 08:35	10/07 16:35	AC
FL-PRO (Petroleum Residual Organic	 Totals)+WATE 	R 		Diluti	on Factor =	1			

Project: Vacant Property (2011-3183) Site Location: 9901 Gladiolus Dr., Fort Myers, FL Water Matrix:

Page 11 of 17 Report Printed: 10/12/11 Submission # 1110000180 Order # 84274

Sample I.D.:	TMW-1	
Collected:	10/05/11	12:45
Received:	10/06/11	13:55
Collected by:	Jake Lathrop	

LABORATORY ANALYSIS REPORT

						EX1.	ANALY.	
TOTAL PRO (C8-C40) U	U	mg/L	0.07	0.21	FL-PRO	10/07 08:50	10/07 22:47	AC

Unless indicated, soil results are reported based on actual (wet) weight basis.

Analytes not currently NELAC certified denoted by ". Work performed by outside (subcontract) labs denoted by Cert.ID in Analyst Field. Results relate only to this sample. QC=Qualifier Codes as defined by DEP 62-160

U=Analyzed for but not detected.

Q=Sample held beyond accepted holding time. I=Value is between MDL and PQL.

J=Estimated value.

1 Authorized CSM Signature (954) 978-6400 Florida-Spectrum Environmental Services, Inc. Certification # E86006

Project:Vacant Property (2011-3183)Site Location:9901 Gladiolus Dr., Fort Myers, FLMatrix:Water

Page 12 of 17 Report Printed: 10/12/11 Submission # 1110000180 Order # 84275

Sample I.D.:	TMW-2	
Collected:	10/05/11	13:30
Received:	10/06/11	13:55
Collected by:	Jake Lathrop	

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
8260B Volatile Organics in Water by	GC/MS	···· ·····	 	Dilutio	on Factor =	1			
Acetone	υ	U	ug/L	1.42	4.26	5030/8260B	10/11 18:24	10/11 18:24	MAZ
Acrolein	υ	U	ug/L	6.99	20.97	5030/8260B	10/11 18:24	10/11 18:24	MAZ
Acrylonitrile	υ	U	ug/L	0.52	1.56	5030/8260B	10/11 18:24	10/11 18:24	MAZ
Methyl Ethyl Ketone	υ	U	ug/L	0.56	1.68	5030/8260B	10/11 18:24	10/11 18:24	MAZ
Dichlorodifluoromethane	υ	U	ug/L	1.06	3.18	5030/8260B	10/11 18:24	10/11 18:24	MAZ
Chloromethane	υ	U	ug/L	0.88	2.64	5030/8260B	10/11 18:24	10/11 18:24	MAZ
Vinyl Chloride	υ	U	ug/L	0.79	2.37	5030/8260B	10/11 18:24	10/11 18:24	MAZ
Bromomethane	υ	U	ug/L	0.60	1.80	5030/8260B	10/11 18:24	10/11 18:24	MAZ
Chloroethane	υ	U	ug/L	0.47	1.41	5030/8260B	10/11 18:24	10/11 18:24	MAZ
Trichlorofluoromethane	υ	U	ug/L	0.48	1.44	5030/8260B	10/11 18:24	10/11 18:24	MAZ
1,1-Dichloroethene	υ	U	ug/L	0.42	1.26	5030/8260B	10/11 18:24	10/11 18:24	MAZ
Methylene Chloride	υ	υ	ug/L	0.99	2.97	5030/8260B	10/11 18:24	10/11 18:24	MAZ
Trans-1,2-Dichloroethene	U	U	ug/L	0.21	0.63	5030/8260B	10/11 18:24	10/11 18:24	MAZ
Methyl-Tert-Butyl Ether	υ	U	ug/L	0.55	1.65	5030/8260B	10/11 18:24	10/11 18:24	MAZ
1,1-Dichloroethane	U	U	ug/L	0.19	0.57	5030/8260B	10/11 18:24	10/11 18:24	MAZ
2,2-Dichloropropane	U	U	ug/L	0,76	2.28	5030/8260B	10/11 18:24	10/11 18:24	MAZ
Cis-1,2-Dichloroethene	U	U	ug/L	0.17	0.51	5030/8260B	10/11 18:24	10/11 18:24	MAZ
·····				1			1	T	

Project:Vacant Property (2011-3183)Site Location:9901 Gladiolus Dr., Fort Myers, FLMatrix:Water

Page 13 of 17 Report Printed: 10/12/11 Submission # 1110000180 Order # 84275

Sample I.D.:	TMW-2	
Collected:	10/05/11	13:30
Received:	10/06/11	13:55
Collected by:	Jake Lathrop	

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Chloroform	U	U	ug/L	0.27	0.81	5030/8260B	10/11 18:24	10/11 18:24	MAZ
Bromochloromethane	υ	U	ug/L	0.21	0.63	5030/8260B	10/11 18:24	10/11 18:24	MAZ
1,1,1-Trichloroethane	U	U	ug/L	0.67	2.01	5030/8260B	10/11 18:24	10/11 18:24	MAZ
1,1-Dichloropropene	U	U	ug/L	0.65	1.95	5030/8260B	10/11 18:24	10/11 18:24	MAZ
Carbon Tetrachloride	U	U	ug/L	0.81	2.43	5030/8260B	10/11 18:24	10/11 18:24	MAZ
Benzene	υ	U	ug/L	0.14	0.42	5030/8260B	10/11 18:24	10/11 18:24	MAZ
1,2-Dichloroethane	υ	U	ug/L	0.31	0.93	5030/8260B	10/11 18:24	10/11 18:24	MAZ
Trichloroethene	υ	U	ug/L	0.34	1.02	5030/8260B	10/11 18:24	10/11 18:24	MAZ
1,2-Dichloropropane	υ	U	ug/L	0.46	1.38	5030/8260B	10/11 18:24	10/11 18:24	MAZ
Bromodichloromethane	U	U	ug/L	0.52	1.56	5030/8260B	10/11 18:24	10/11 18:24	MAZ
2-Chloroethylvinyl Ether	U	U	ug/L	0.76	2.28	5030/8260B	10/11 18:24	10/11 18:24	MAZ
Dibromomethane	υ	U	ug/L	0.37	1.11	5030/8260B	10/11 18:24	10/11 18:24	MAZ
Cis-1,3-Dichloropropene	U	U	ug/L	0.41	1.23	5030/8260B	10/11 18:24	10/11 18:24	MAZ
Toluene	υ	U	ug/L	0.31	0.93	5030/8260B	10/11 18:24	10/11 18:24	MAZ
Trans-1,3-Dichloropropene	υ	U	ug/L	0.28	0.84	5030/8260B	10/11 18:24	10/11 18:24	MAZ
1,1,2-Trichloroethane	U	υ	ug/L	0.46	1.38	5030/8260B	10/11 18:24	10/11 18:24	MAZ
1,3-Dichloropropane	U	υ	ug/L	0.46	1.38	5030/8260B	10/11 18:24	10/11 18:24	MAZ
Tetrachloroethene	U	U	ug/L	0.42	1.26	5030/8260B	10/11 18:24	10/11 18:24	MAZ
		1	1	1	1				1

Project:Vacant Property (2011-3183)Site Location:9901 Gladiolus Dr., Fort Myers, FLMatrix:Water

Page 14 of 17 Report Printed: 10/12/11 Submission # 1110000180 Order # 84275

Sample I.D.:	TMW-2	
Collected:	10/05/11	13:30
Received:	10/06/11	13:55
Collected by:	Jake Lathrop	

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Dibromochloromethane	υ	υ	ug/L	0.30	0.90	5030/8260B	10/11 18:24	10/11 18:24	MAZ
1,2-Dibromoethane (EDB)	υ	U	ug/L	0.25	0.75	5030/8260B	10/11 18:24	10/11 18:24	MAZ
Bromobenzene	υ	υ	ug/L	0.40	1.20	5030/8260B	10/11 18:24	10/11 18:24	MAZ
Chlorobenzene	υ	U	ug/L	0.34	1.02	5030/8260B	10/11 18:24	10/11 18:24	MAZ
Ethylbenzene	υ	U	ug/L	0.42	1.26	5030/8260B	10/11 18:24	10/11 18:24	MAZ
1,1,1,2-Tetrachloroethane	υ	υ	ug/L	0.15	0.45	5030/8260B	10/11 18:24	10/11 18:24	MAZ
m & p-Xylene	U	U	ug/L	0.80	2.40	5030/8260B	10/11 18:24	10/11 18:24	MAZ
o-Xylene	U	U	ug/L	0.32	0.96	5030/8260B	10/11 18:24	10/11 18:24	MAZ
Styrene	U	U	ug/L	0.31	0.93	5030/8260B	10/11 18:24	10/11 18:24	MAZ
Isopropylbenzene	υ	U	ug/L	0.38	1.14	5030/8260B	10/11 18:24	10/11 18:24	MAZ
Bromoform	υ	U	ug/L	0.16	0.48	5030/8260B	10/11 18:24	10/11 18:24	MAZ
1,1,2,2-Tetrachloroethane	υ	U	ug/L	0.14	0.42	5030/8260B	10/11 18:24	10/11 18:24	MAZ
1,2,3-Trichloropropane	U	U	ug/L	0.22	0.66	5030/8260B	10/11 18:24	10/11 18:24	MAZ
1,3,5-Trimethylbenzene	υ	U	ug/L	0.38	1.14	5030/8260B	10/11 18:24	10/11 18:24	MAZ
2-Chlorotoluene	υ	U	ug/L	0.38	1.14	5030/8260B	10/11 18:24	10/11 18:24	MAZ
4-Chlorotoluene	υ	U	ug/L	0.33	0.99	5030/8260B	10/11 18:24	10/11 18:24	MAZ
Tert-Butylbenzene	υ	U	ug/L	0.40	1.20	5030/8260B	10/11 18:24	10/11 18:24	MAZ
1,2,4-Trimethylbenzene	υ	υ	ug/L	0.38	1.14	5030/8260B	10/11 18:24	10/11 18:24	MAZ
1,2,4-11inicutytoch2cite		ļ <u> </u>				2000/02000			

Project:Vacant Property (2011-3183)Site Location:9901 Gladiolus Dr., Fort Myers, FLMatrix:Water

Page 15 of 17 Report Printed: 10/12/11 Submission # 1110000180 Order # 84275

Sample I.D.:	TMW-2	
Collected:	10/05/11	13:30
Received:	10/06/11	13:55
Collected by:	Jake Lathrop	

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Sec-Butylbenzene	υ	υ	ug/L	0.45	1.35	5030/8260B	10/11 18:24	10/11 18:24	MAZ
P-Isopropyltoluene	U	U	ug/L	0.41	1.23	5030/8260B	10/11 18:24	10/11 18:24	MAZ
1,3-Dichlorobenzene	υ	υ	ug/L	0.40	1.20	5030/8260B	10/11 18:24	10/11 18:24	MAZ
1,4-Dichlorobenzene	υ	U	ug/L	0.39	1.17	5030/8260B	10/11 18:24	10/11 18:24	MAZ
n-Butylbenzene	υ	U	ug/L	0.34	1.02	5030/8260B	10/11 18:24	10/11 18:24	MAZ
n-PropylBenzene	U	υ	ug/L	0.39	1.17	5030/8260B	10/11 18:24	10/11 18:24	MAZ
1,2-Dichlorobenzene	U	υ	ug/L	0.30	0.90	5030/8260B	10/11 18:24	10/11 18:24	MAZ
1,2-Dibromo-3-Chloropropane (DBCP	ן ע ע	υ	ug/L	0.17	0.51	5030/8260B	10/11 18:24	10/11 18:24	MAZ
1,2,4-Trichlorobenzene	U	υ	ug/L	0.23	0.69	5030/8260B	10/11 18:24	10/11 18:24	MAZ
Hexachlorobutadiene	U	υ	ug/L	0.47	1.41	5030/8260B	10/11 18:24	10/11 18:24	MAZ
Naphthalene	U	υ	ug/L	0.24	0.72	5030/8260B	10/11 18:24	10/11 18:24	MAZ
1,2,3-Trichlorobenzene	U	υ	ug/L	0.28	0.84	5030/8260B	10/11 18:24	10/11 18:24	MAZ
8270D PAHs in WATER by GC/MS	1	1	r	Diluti	on Factor =	1			
Naphthalene	U	U	ug/L	0.027	0.081	8270D	10/07 14:49	10/07 17:49	AC
2-Methylnaphthalene	υ	υ	ug/L	0.036	0.108	8270D	10/07 14:49	10/07 17:49	AC
1-Methylnaphthalene	υ	U	ug/L	0.020	0.060	8270D	10/07 14:49	10/07 17:49	AC
Acenaphthene	U	U	ug/L	0.008	0.024	8270D	10/07 14:49	10/07 17:49	AC
Phenanthrene	υ	υ	ug/L	0.013	0.039	8270D	10/07 14:49	10/07 17:49	AC
		i – – –		İ	1			1	

Project:Vacant Property (2011-3183)Site Location:9901 Gladiolus Dr., Fort Myers, FLMatrix:Water

Page 16 of 17 Report Printed: 10/12/11 Submission # 1110000180 Order # 84275

Sample I.D.:	TMW-2	
Collected:	10/05/11	13:30
Received:	10/06/11	13:55
Collected by:	Jake Lathrop	

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Fluoranthene	υ	υ	ug/L	0.004	0.012	8270D	10/07 14:49	10/07 17:49	AC
Benzo(a)anthracene	υ	υ	ug/L	0.004	0.012	8270D	10/07 14:49	10/07 17:49	AC
Benzo(b)fluoranthene	υ	υ	ug/L	0.008	0.024	8270D	10/07 14:49	10/07 17:49	AC
Benzo(a)pyrene	υ	υ	ug/L	0.006	0.018	8270D	10/07 14:49	10/07 17:49	AC
Benzo(ghi)perylene	υ	υ	ug/L	0.007	0.021	8270D	10/07 14:49	10/07 17:49	AC
Acenaphthylene	υ	υ	ug/L	0.006	0.018	8270D	10/07 14:49	10/07 17:49	AC
Fluorene	υ	υ	ug/L	0.008	0.024	8270D	10/07 14:49	10/07 17:49	AC
Anthracene	U	υ	ug/L	0.006	0.018	8270D	10/07 14:49	10/07 17:49	AC
Pyrene	U	υ	ug/L	0.011	0.033	8270D	10/07 14:49	10/07 17:49	AC
Chrysene	U	υ	ug/L	0.004	0.012	8270D	10/07 14:49	10/07 17:49	AC
Benzo(k)fluoranthene	υ	υ	ug/L	0.003	0.009	8270D	10/07 14:49	10/07 17:49	AC
Indeno(1,2,3-cd)pyrene	υ	υ	ug/L	0.011	0.033	8270D	10/07 14:49	10/07 17:49	AC
Dibenzo(a,h)anthracene	U	υ	ug/L	0.004	0.012	8270D	10/07 14:49	10/07 17:49	AC
FL-PRO (Petroleum Residual Organic	Totals)-WATEI	 2 	1	Diluti	on Factor =	1			

Project:Vacant Property (2011-3183)Site Location:9901 Gladiolus Dr., Fort Myers, FL Water Matrix:

Page 17 of 17 Report Printed: 10/12/11 Submission # 1110000180 Order # 84275

Sample I.D.:	TMW-2	
Collected:	10/05/11	13:30
Received:	10/06/11	13:55
Collected by:	Jake Lathrop	

LABORATORY ANALYSIS REPORT

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
TOTAL PRO (C8-C40)	υ	U	mg/L	0.07	0.21	FL-PRO	10/07 08:51	10/07 23:19	AC
					1				

Unless indicated, soil results are reported based on actual (wet) weight basis.

Analytes not currently NELAC certified denoted by $\tilde{}$. Work performed by outside (subcontract) labs denoted by Cert.ID in Analyst Field. Results relate only to this sample. QC=Qualifier Codes as defined by DEP 62-160

U=Analyzed for but not detected.

Q=Sample held beyond accepted holding time. I=Value is between MDL and PQL.

J=Estimated value.

Authorized CSM Signature (954) 978-6400 Florida-Spectrum Environmental Services, Inc. Certification # E86006

	Misc. Charges	Pick-Up hrs	Sampling hrs	Temp as received $\frac{4}{V + N}$ Custody seals?	Sample Custody & Field Comments	Deliverables:	"I waive NELAC protocop" (sion here)	Special Comments:	y 10		BADTS THUS	84 J/4 TMM.	5-175,1270	-42 8 4-4 2 4 2 8 -4	89271 61-3	10 - 270 CA-2	1-12 104 404 61-1	Laboratory Use Only	Shaded Areas For	ORDER # Sar Lab Control Number I	(printed) Joke L	Contact: Adam Bra	and/or Number Vs cant Pr	(company name)	(company name) (EE+G		Logged in LIMS by NB	SUBMISSION #
D-DIOWILHIEL DRASHC	A-other Ind-10 Additional Bottl	W-wide mouth	S4-4 oz soil jar / S8-8 oz T-250 ml V-40 ml vial	A-itter amber B-Bacteria bag/bottle F-500 ml O-125 r L-liter bottle	Bottle Ty	QA/QC H					2 /	1					10-03	2011		mple Date	at the work ATT	Pho Pho	reporty (201				Environmental Services, Inc.	Florida
	<u>e Types</u> E		soil jar X		Je -	eport Needed?			-		1 0051	1245	1150	1125	1105	1040	1020			d Time Sampled	EE+2 305	ne: 305-374 1	1.3183)	Purchase Order #		Original-R	☐ 528 Gooch Road ☐ 510 Parrot Ave.	1460 W. McNal
	lex-Hex Cr Buffer DA-Ethylene Diamine	Additional Prese	I-MCAB N-P	-ascorbic acid P-I S-HCL S-E Di-CuSO4 T-N I-HNO3 U-U	Preservati	Yes No (add					24	KH WA					cm) 22/2	HW BIO SEA OIL X AIR Codes	GW WW Pres.	Matrix Bottle	1722-2002	028-				eturn w/report	d Fort Meade, FL 33 N, Okeechobee, FL	CHAIN (Road Ft Laud. FL
		rvatives	4-NH4CL	13P04 12S04 1a2S203 Jnpreserved		itional charge)	Fotal					č)	\forall				છ	Letter Suffixes # A-?	& NELAC	Number of Containers	Sampler Signature	Fax: Zos	Site Location: 9	Invoice to Address;	Report to Address: 7	Yellow-La	101 Ie 841 Te 34972 Te	DF CUST
www.flenviro	e announce of t	3 Received hv:	3 Relinquished by:	2 Relinghistored by:	1 Received by	- Neurifusien	Signature				5	c	۶ ۲	۲ ۲	۲ ۲	۲ ۲	5	T- As Ard	, hive +-	Ana	J. hart	-374-9004	901 Gladio	Mismi L	5751 M.	b File Copy	1: (912) 238-5050 1: (863) 285-8145 1: (863) 763-3336	ODY RECO
).com			A. La		XA X	· Loo ha				~	\ \ \ \	/ 7 7	-					82 FL- PR- V0 82	70 - 0 L- 60	lysis Requi	down -	Em	ho Dr. Fr	acres 12 23	eni Laka	Pink - Sampler Copy	Fax: (912) 234 Fax: (863) 285 Fax: (863) 763	PRD Fax: (954) 978
COC Page			CAL IL			DE22/la	Affiliation													red		ail:	" Moors, Fr	1014	D~,	7 Ru.	-4815 -7030 -1544	-2233 ())~
1 of 1	•		1/11/3:5	46/11/2	Sala 1	10-06-11/120	Date/Ti											ဂိဇာဒ ရာ	HP HP 200	Dield Tes			1			sh Surcharges apply	H RESERVATION	E DATE Requester

Project: Vacant Property (2011-3183) Site Location: 9901 Gladiolus Dr., Ft. Myers, FL Page 1 of 1 Report Printed:10/17/11 Submission # 1110000384

10/06/11 13:55 **Received:** Collected by: Jake Lathrop

LABORATORY ANALYSIS REPORT

	Ars	enic, Di	ssolved								
	SAMPLE ID Date	Time	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
GP-2	10/05/11	10:40	0.018		mg/L	0.0012	0.0036	200.7	10/13	10/13 14:08	IMN
GP-3	10/05/11	11:05	0.011		mg/L	0.0012	0.0036	200.7	10/13	10/13 14:12	IMN
GP-5	10/05/11	11:50	0.023		mg/L	0.0012	0.0036	200.7	10/13	10/13 14:22	IMN
											L

Unless indicated, soil results are reported based on actual (wet) weight basis. Analytes not currently NELAC certified denoted by ⁻. Work performed by outside (subcontract) labs denoted by Cert.ID in Analyst Field. Results relate only to the samples. QC=Qualifier Codes as defined by DEP 62-160

U=Analyzed for but not detected.

Q=Sample held beyond acceptable holding time. I=Value is between MDL and PQL.

J=Estimated value.

Authorized CSM Signature Florida-Spectrum Environmental Services, Inc. Certification # E86006

Florida-Spectrum Environmental Services, Inc. 1460 W. McNab Road, Fort Lauderdale, FL 33309

Pembroke Laboratory 528 Gooch Rd. Fort Meade, FL 33841

Big Lake Laboratory 610 North Parrot Ave. Okeechobee, FL 34972 www.flenviro.com Spectrum Laboratories 630 Indian St. Savannah, GA 31401

All NELAP certified analyses are performed in accordance with Chapter 64E-1 Florida Administrative Code, which has been determined to be equivalent to NELAC standards. Analyses certified by programs other than NELAP are designated with a "~".

Deliverables: Sample Clifto femplartective futbol rIN/R Sampling PICI/D PICI/D PICI/D	6 224 20 7 204 20 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	OWDER Lab control N Sumuch for Junior Junior Junior Junior Junior Junior Junior Junior Junior Junior Junior Junior Junior Junior Junior Junior Junior Junior Juniori Juniori Juniori Juniori Junior Junior Junior J	SUBMIL Logged in Lin CSM disigned Report to: (company name) Involce to: (company name) Project to: Project Name and/or Number Project Contact: Sampler Name: (printed)
			Harry Constant
The provide the providence of		Sample	Frasius Brasius
QA/QC Re Dutle Type miter The big/hottle The big/hottle T		Date Sampled	
port Needed?	1245	Time Sampled 1020 1105 1125	1460 W. McNa 630 Indian Stre 528 Gooch Roa 610 Parrot Ave 610 Parrot Ave Onder # Order # Order #
Yes No CHOICE IN CHOICE IN CHOICE IN CHOICE IN CHOICE IN CHOICE IN CHOICE IN CONTRACTOR INCONTRACTOR INTON INCONTRACTOR I			CHAI bRoad Ft Lau et Sayannah, G d Fort Meade N, Okeechobe N, Okeechobe
(additional c		outle Num & Cout Pres. Ree Jodes # Su Su Su Su Su Su	NOF C 1 FL 33309 A 31401 FL 33841 FL 338472 e, FL 34972 Report Addree Sitte Sitte Sitte Sitte Sitte Sitte Sitte
harge) 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		$\frac{1}{\zeta} < \zeta < \zeta < \frac{1}{\zeta} + \frac{1}{\zeta}$	$\frac{\text{USTOD}}{\text{Tel: (954)}}$ Tel: (954) Tel: (954) Tel: (863) Tel: (863) Tel: (863) Tel: (863) Tel: (863) Tel: (863) Tel: (863) Tel: (974) Tel: (954) Tel: (954)
Received by Relingtinguesed Reduced by Received by: Received by:		SSS Arobive PAIT-	Y RECC 978-6400 238-5050 285-8145 763-3336 763-3336 763-3336 763-3336 763-3336
To com	2 7 1 1 7 7 7 7 7 7 7 7	B270 VSIS FL- PRO Re	Par (9) Par (9) Par (8) Par (8)
	7 7	V04- 8240 D13	() () () () () () () () () ()
COC Page			The second secon
ha-of m			DATE Reques
T SS R			

Maria Castellanos

From: Adam Brosius [ABrosius@eeandg.com]

Sent: Thursday, October 13, 2011 11:16 AM

To: Maria Castellanos

Cc: Craig C. Clevenger

Subject: RE: Vacant Property

Thanks Maria.

Please remove GP-2, GP-3 and GP-5 from the archive and analyze for dissolved arsenic. Please shoot for a Monday TAT.

Thank you. Have a nice day too!

Adam B. Brosius Senior Project Professional EE&G Environmental Services, LLC 5751 Miami Lakes Drive Miami Lakes, FL 33014 Ph: 305.374.8300 Fax: 305.374.9004 Mobile: 305.710.7014 abrosius@eeandg.com

From: Maria Casellanos [mailto:m.castellanos@flenviro.com]
Sent: Wednesday, October 12, 2011 4:58 PM
To: Adam Brosius
Cc: Craig C. Clevenger
Subject: Vacant Property

Hello Adam, This report is now completed. Have a good one!

Maria E. Castellanos – CSM Director Florida Environmental Services, Inc. 1460 West McNab Road Fort Lauderdale, FL 33309 m.castellanos@flenviro.com

(O) 954-978-6400 (F) 954-978-2233

APPENDIX B

PROPOSED REDEVELOPMENT PLAN

RESOLUTION NUMBER Z-09-017

RESOLUTION OF THE BOARD OF COUNTY COMMISSIONERS OF LEE COUNTY, FLORIDA

WHEREAS, an application was filed by the property owner, Gladiolus K & R Partners, LLC, 10± acres from_Agricultural (AG-2) to Commercial Planned Development (CPD), in reference to The Villages on Gladiolus; and,

WHEREAS, a public hearing was advertised and held on April 9, 2009, before the Lee County Zoning Hearing Examiner, who gave full consideration to the evidence in the record for Case #DCI2006-00102; and

WHEREAS, a second public hearing was advertised and held on June 29, 2009, before the Lee County Board of Commissioners, who gave full and complete consideration to the recommendations of the staff, the Hearing Examiner, the documents on record and the testimony of all interested persons.

NOW, THEREFORE, BE IT RESOLVED BY THE BOARD OF COUNTY COMMISSIONERS:

SECTION A. REQUEST

The applicant filed a request to rezone 10± acres from AG-2 to CPD with a maximum of 29,999 square feet of commercial retail, 128,000 square feet of office; or 29,999 square feet commercial retail, 78,000 square feet office and 120-unit hotel. Maximum height requested is two (2) stories/35 feet for office and retail and four (4) stories/50 feet for a hotel. No development blasting is requested. The development will connect to public potable water and sanitary sewer service. The property is located in the Urban Community Land Use Category and is legally described in attached Exhibit A. The request is APPROVED, SUBJECT TO the conditions and deviations specified in Sections B and C below.

SECTION B. CONDITIONS:

All references to uses are as defined or listed in the Lee County Land Development Code (LDC).

1. The development of this project must be consistent with the 1-page Master Concept Plan (MCP) entitled "MASTER CONCEPT PLAN, GLADIOLUS VILLAGE" date-stamped "Received Jul 07 2009 Community Development," attached hereto as Exhibit C, except as modified by the conditions below.

This development must comply with all requirements of the LDC at time of local development order approval, except as may be granted by deviation as part of this planned development. If changes to the MCP are subsequently pursued, appropriate approvals will be necessary.

CASE NO: DCI2006-00102

Z-09-017 Page 1 of 11

06-29-09Z